- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Shrestha, Keshav (3)
-
Phillips, Cole (2)
-
Shtefiienko, Kyryl (2)
-
Bhandari, Shalika R (1)
-
Capa_Salinas, Andrea N (1)
-
Graf, David E (1)
-
Graf, David_E (1)
-
Gusain, Vivek (1)
-
Magar, Birendra A (1)
-
Nguyen, Thinh (1)
-
Ortiz, Brenden_R (1)
-
Pokharel, Ganesh (1)
-
Rai, D P (1)
-
Wilson, Stephen D (1)
-
Zeeshan, Mohd (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
NA (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bhandari, Shalika R; Zeeshan, Mohd; Gusain, Vivek; Shrestha, Keshav; Rai, D P (, APL Quantum)NA (Ed.)This work presents a detailed study of the electronic structure, phonon dispersion, Z2 invariant calculation, and Fermi surface of the newly discovered kagome superconductor CsV3Sb5, using density functional theory. The phonon dispersion in the pristine state reveals two negative modes at the M and L points of the Brillouin zone, indicating lattice instability. CsV3Sb5 transitions into a structurally stable 2 × 2 × 1 charge density wave (CDW) phase, confirmed by positive phonon modes. The electronic band structure shows several Dirac points near the Fermi level, with a narrow gap opening due to spin–orbit coupling (SOC), although the effect of SOC on other bands is minimal. In the pristine phase, this material exhibits a quasi-2D cylindrical Fermi surface, which undergoes reconstruction in the CDW phase. We calculated quantum oscillation frequencies using Onsager’s relation, finding good agreement with experimental results in the CDW phase. To explore the topological properties of CsV3Sb5, we computed the Z2 invariant in both pristine and CDW phases, resulting in a value of (ν0; ν1ν2ν3) = (1; 000), suggesting the strong topological nature of this material. Our detailed analysis of phonon dispersion, electronic bands, Fermi surface mapping, and Z2 invariant provides insights into the topological properties, CDW order, and unconventional superconductivity in AV3Sb5 (A = K, Rb, and Cs).more » « lessFree, publicly-accessible full text available December 1, 2025
-
Phillips, Cole; Shtefiienko, Kyryl; Nguyen, Thinh; Capa_Salinas, Andrea N; Magar, Birendra A; Pokharel, Ganesh; Wilson, Stephen D; Graf, David E; Shrestha, Keshav (, Physical Review B)NA (Ed.)This work presents the evolution of the electronic properties of kagome superconductor CsV3Sb5 under pressure. The magnetoresistance under high fields of 43 T showed clear Shubnikov–de Haas (SdH) oscillations with multiple frequencies up to 2000 T. With the application of pressure, we observed a sudden change in SdH oscillations with the disappearance of the high-frequency signal near the critical pressure Pc1 ∼ 0.7 GPa. We argue that this change could be due to a reconstruction of the Fermi surface (FS) in CsV3Sb5. To interpret our experimental data, we computed the electronic band structures and FS of CsV3Sb5 using ab initio density functional theory. Our results indicate that both the electronic bands and FS of CsV3Sb5 are highly sensitive to external pressure. The deformation of FS pockets with increasing pressure qualitatively explains our experimental observations. The pressure-driven FS instability in CsV3Sb5 may induce changes in its electronic states, such as superconductivity, charge density wave, nontrivial topology, and more. Therefore, these results are invaluable for gaining insights into these electronic states in CsV3Sb5, as well as in other kagome materials.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government
